Models / Chat / Llama 3.3 70B Instruct Turbo Free API
Llama 3.3 70B Instruct Turbo Free API
Free
LLM
Free endpoint to try this 70B multilingual LLM optimized for dialogue, excelling in benchmarks and surpassing many chat models.
Try our Llama 3.3 Free API

Free
API Usage
How to use Llama 3.3 70B Instruct Turbo FreeModel CardPrompting Llama 3.3 70B Instruct Turbo FreeApplications & Use CasesHow to use Llama 3.3 70B Instruct Turbo FreeLlama 3.3 70B Instruct Turbo Free API Usage
Endpoint
meta-llama/Llama-3.3-70B-Instruct-Turbo-Free
RUN INFERENCE
curl -X POST "https://api.together.xyz/v1/chat/completions" \
-H "Authorization: Bearer $TOGETHER_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
"messages": [],
"stream": true
}'
JSON RESPONSE
RUN INFERENCE
from together import Together
client = Together()
response = client.chat.completions.create(
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
messages=[],
stream=True
)
for token in response:
if hasattr(token, 'choices'):
print(token.choices[0].delta.content, end='', flush=True)
JSON RESPONSE
RUN INFERENCE
import Together from "together-ai";
const together = new Together();
const response = await together.chat.completions.create({
messages: [],
model: "meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
stream: true
});
for await (const token of response) {
console.log(token.choices[0]?.delta?.content)
}
JSON RESPONSE
Model Provider:
Meta
Type:
Chat
Variant:
Instruct
Parameters:
70B
Deployment:
✔ Serverless
✔️ On-Demand Dedicated
Quantization
FP8
Context length:
8K
Pricing:
Free
Check pricing
Run in playground
Deploy model
Quickstart docs
Quickstart docs
How to use Llama 3.3 70B Instruct Turbo Free
Model details
Prompting Llama 3.3 70B Instruct Turbo Free
Applications & Use Cases
How to use Llama 3.3 70B Instruct Turbo Free
Looking for production scale? Deploy on a dedicated endpoint
Deploy Llama 3.3 70B Instruct Turbo Free on a dedicated endpoint with custom hardware configuration, as many instances as you need, and auto-scaling.
