Models / Language / Mixtral 8x7B v0.1 API
Mixtral 8x7B v0.1 API

API Usage
How to use Mixtral 8x7B v0.1Model CardPrompting Mixtral 8x7B v0.1Applications & Use CasesHow to use Mixtral 8x7B v0.1Mixtral 8x7B v0.1 API Usage
Endpoint
mistralai/Mixtral-8x7B-v0.1
RUN INFERENCE
curl -X POST "https://api.together.xyz/v1/completions" \
-H "Authorization: Bearer $TOGETHER_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "meta-llama-llama-2-70b-hf",
"prompt": "",
"stream": true
}'
JSON RESPONSE
RUN INFERENCE
from together import Together
client = Together()
response = client.completions.create(
model="meta-llama-llama-2-70b-hf",
prompt="",
stream=True
)
for token in response:
if hasattr(token, 'choices'):
print(token.choices[0].delta.content, end='', flush=True)
JSON RESPONSE
RUN INFERENCE
import Together from "together-ai";
const together = new Together();
const response = await together.completions.create({
model: "meta-llama-llama-2-70b-hf",
prompt: "",
stream: true
});
for await (const token of response) {
console.log(token.choices[0]?.delta?.content)
}
JSON RESPONSE
Model Provider:
Type:
Language
Variant:
Parameters:
46B
Deployment:
✔ Serverless
✔️ On-Demand Dedicated
Quantization
Context length:
32768
Pricing:
$0.60
Check pricing
Run in playground
Deploy model
Quickstart docs
Quickstart docs
How to use Mixtral 8x7B v0.1
Model details
Prompting Mixtral 8x7B v0.1
Applications & Use Cases
How to use Mixtral 8x7B v0.1
Looking for production scale? Deploy on a dedicated endpoint
Deploy Mixtral 8x7B v0.1 on a dedicated endpoint with custom hardware configuration, as many instances as you need, and auto-scaling.
