This website uses cookies to anonymously analyze website traffic using Google Analytics.

Models / QwenQwen /  / Qwen3 0.6B API

Qwen3 0.6B API

0.6B-parameter ultra-compact conversational AI model designed for edge deployment mobile chat applications and lightweight instruction following tasks.

Deploy Qwen3 0.6B
New

To run this model you first need to deploy it on a Dedicated Endpoint.

Qwen3 0.6B API Usage

Endpoint

curl -X POST "https://api.together.xyz/v1/chat/completions" \
  -H "Authorization: Bearer $TOGETHER_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "Qwen/Qwen3-0.6B",
    "messages": [
      {
        "role": "user",
        "content": "What are some fun things to do in New York?"
      }
    ]
}'
curl -X POST "https://api.together.xyz/v1/images/generations" \
  -H "Authorization: Bearer $TOGETHER_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "Qwen/Qwen3-0.6B",
    "prompt": "Draw an anime style version of this image.",
    "width": 1024,
    "height": 768,
    "steps": 28,
    "n": 1,
    "response_format": "url",
    "image_url": "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png"
  }'
curl -X POST https://api.together.xyz/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $TOGETHER_API_KEY" \
  -d '{
    "model": "Qwen/Qwen3-0.6B",
    "messages": [{
      "role": "user",
      "content": [
        {"type": "text", "text": "Describe what you see in this image."},
        {"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png"}}
      ]
    }],
    "max_tokens": 512
  }'
curl -X POST https://api.together.xyz/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $TOGETHER_API_KEY" \
  -d '{
    "model": "Qwen/Qwen3-0.6B",
    "messages": [{
      "role": "user",
      "content": "Given two binary strings `a` and `b`, return their sum as a binary string"
    }]
  }'
curl -X POST https://api.together.xyz/v1/rerank \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $TOGETHER_API_KEY" \
  -d '{
    "model": "Qwen/Qwen3-0.6B",
    "query": "What animals can I find near Peru?",
    "documents": [
      "The giant panda (Ailuropoda melanoleuca), also known as the panda bear or simply panda, is a bear species endemic to China.",
      "The llama is a domesticated South American camelid, widely used as a meat and pack animal by Andean cultures since the pre-Columbian era.",
      "The wild Bactrian camel (Camelus ferus) is an endangered species of camel endemic to Northwest China and southwestern Mongolia.",
      "The guanaco is a camelid native to South America, closely related to the llama. Guanacos are one of two wild South American camelids; the other species is the vicuña, which lives at higher elevations."
    ],
    "top_n": 2
  }'
curl -X POST https://api.together.xyz/v1/embeddings \
  -H "Authorization: Bearer $TOGETHER_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "input": "Our solar system orbits the Milky Way galaxy at about 515,000 mph.",
    "model": "Qwen/Qwen3-0.6B"
  }'
curl -X POST https://api.together.xyz/v1/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $TOGETHER_API_KEY" \
  -d '{
    "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
    "prompt": "A horse is a horse",
    "max_tokens": 32,
    "temperature": 0.1,
    "safety_model": "Qwen/Qwen3-0.6B"
  }'
curl --location 'https://api.together.ai/v1/audio/generations' \
  --header 'Content-Type: application/json' \
  --header 'Authorization: Bearer $TOGETHER_API_KEY' \
  --output speech.mp3 \
  --data '{
    "input": "Today is a wonderful day to build something people love!",
    "voice": "helpful woman",
    "response_format": "mp3",
    "sample_rate": 44100,
    "stream": false,
    "model": "Qwen/Qwen3-0.6B"
  }'
curl -X POST "https://api.together.xyz/v1/audio/transcriptions" \
  -H "Authorization: Bearer $TOGETHER_API_KEY" \
  -F "model=Qwen/Qwen3-0.6B" \
  -F "language=en" \
  -F "response_format=json" \
  -F "timestamp_granularities=segment"
from together import Together

client = Together()

response = client.chat.completions.create(
  model="Qwen/Qwen3-0.6B",
  messages=[
    {
      "role": "user",
      "content": "What are some fun things to do in New York?"
    }
  ]
)
print(response.choices[0].message.content)
from together import Together

client = Together()

imageCompletion = client.images.generate(
    model="Qwen/Qwen3-0.6B",
    width=1024,
    height=768,
    steps=28,
    prompt="Draw an anime style version of this image.",
    image_url="https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png",
)

print(imageCompletion.data[0].url)


from together import Together

client = Together()

response = client.chat.completions.create(
    model="Qwen/Qwen3-0.6B",
    messages=[{
    	"role": "user",
      "content": [
        {"type": "text", "text": "Describe what you see in this image."},
        {"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png"}}
      ]
    }]
)
print(response.choices[0].message.content)

from together import Together

client = Together()
response = client.chat.completions.create(
  model="Qwen/Qwen3-0.6B",
  messages=[
  	{
	    "role": "user", 
      "content": "Given two binary strings `a` and `b`, return their sum as a binary string"
    }
 ],
)

print(response.choices[0].message.content)

from together import Together

client = Together()

query = "What animals can I find near Peru?"

documents = [
  "The giant panda (Ailuropoda melanoleuca), also known as the panda bear or simply panda, is a bear species endemic to China.",
  "The llama is a domesticated South American camelid, widely used as a meat and pack animal by Andean cultures since the pre-Columbian era.",
  "The wild Bactrian camel (Camelus ferus) is an endangered species of camel endemic to Northwest China and southwestern Mongolia.",
  "The guanaco is a camelid native to South America, closely related to the llama. Guanacos are one of two wild South American camelids; the other species is the vicuña, which lives at higher elevations.",
]

response = client.rerank.create(
  model="Qwen/Qwen3-0.6B",
  query=query,
  documents=documents,
  top_n=2
)

for result in response.results:
    print(f"Relevance Score: {result.relevance_score}")

from together import Together

client = Together()

response = client.embeddings.create(
  model = "Qwen/Qwen3-0.6B",
  input = "Our solar system orbits the Milky Way galaxy at about 515,000 mph"
)

from together import Together

client = Together()

response = client.completions.create(
  model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
  prompt="A horse is a horse",
  max_tokens=32,
  temperature=0.1,
  safety_model="Qwen/Qwen3-0.6B",
)

print(response.choices[0].text)

from together import Together

client = Together()

speech_file_path = "speech.mp3"

response = client.audio.speech.create(
  model="Qwen/Qwen3-0.6B",
  input="Today is a wonderful day to build something people love!",
  voice="helpful woman",
)
    
response.stream_to_file(speech_file_path)

from together import Together

client = Together()
response = client.audio.transcribe(
    model="Qwen/Qwen3-0.6B",
    language="en",
    response_format="json",
    timestamp_granularities="segment"
)
print(response.text)
import Together from 'together-ai';
const together = new Together();

const completion = await together.chat.completions.create({
  model: 'Qwen/Qwen3-0.6B',
  messages: [
    {
      role: 'user',
      content: 'What are some fun things to do in New York?'
     }
  ],
});

console.log(completion.choices[0].message.content);
import Together from "together-ai";

const together = new Together();

async function main() {
  const response = await together.images.create({
    model: "Qwen/Qwen3-0.6B",
    width: 1024,
    height: 1024,
    steps: 28,
    prompt: "Draw an anime style version of this image.",
    image_url: "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png",
  });

  console.log(response.data[0].url);
}

main();

import Together from "together-ai";

const together = new Together();
const imageUrl = "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png";

async function main() {
  const response = await together.chat.completions.create({
    model: "Qwen/Qwen3-0.6B",
    messages: [{
      role: "user",
      content: [
        { type: "text", text: "Describe what you see in this image." },
        { type: "image_url", image_url: { url: imageUrl } }
      ]
    }]
  });
  
  console.log(response.choices[0]?.message?.content);
}

main();

import Together from "together-ai";

const together = new Together();

async function main() {
  const response = await together.chat.completions.create({
    model: "Qwen/Qwen3-0.6B",
    messages: [{
      role: "user",
      content: "Given two binary strings `a` and `b`, return their sum as a binary string"
    }]
  });
  
  console.log(response.choices[0]?.message?.content);
}

main();

import Together from "together-ai";

const together = new Together();

const query = "What animals can I find near Peru?";
const documents = [
  "The giant panda (Ailuropoda melanoleuca), also known as the panda bear or simply panda, is a bear species endemic to China.",
  "The llama is a domesticated South American camelid, widely used as a meat and pack animal by Andean cultures since the pre-Columbian era.",
  "The wild Bactrian camel (Camelus ferus) is an endangered species of camel endemic to Northwest China and southwestern Mongolia.",
  "The guanaco is a camelid native to South America, closely related to the llama. Guanacos are one of two wild South American camelids; the other species is the vicuña, which lives at higher elevations."
];

async function main() {
  const response = await together.rerank.create({
    model: "Qwen/Qwen3-0.6B",
    query: query,
    documents: documents,
    top_n: 2
  });
  
  for (const result of response.results) {
    console.log(`Relevance Score: ${result.relevance_score}`);
  }
}

main();


import Together from "together-ai";

const together = new Together();

const response = await client.embeddings.create({
  model: 'Qwen/Qwen3-0.6B',
  input: 'Our solar system orbits the Milky Way galaxy at about 515,000 mph',
});

import Together from "together-ai";

const together = new Together();

async function main() {
  const response = await together.completions.create({
    model: "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
    prompt: "A horse is a horse",
    max_tokens: 32,
    temperature: 0.1,
    safety_model: "Qwen/Qwen3-0.6B"
  });
  
  console.log(response.choices[0]?.text);
}

main();

import Together from 'together-ai';

const together = new Together();

async function generateAudio() {
   const res = await together.audio.create({
    input: 'Today is a wonderful day to build something people love!',
    voice: 'helpful woman',
    response_format: 'mp3',
    sample_rate: 44100,
    stream: false,
    model: 'Qwen/Qwen3-0.6B',
  });

  if (res.body) {
    console.log(res.body);
    const nodeStream = Readable.from(res.body as ReadableStream);
    const fileStream = createWriteStream('./speech.mp3');

    nodeStream.pipe(fileStream);
  }
}

generateAudio();

import Together from "together-ai";

const together = new Together();

const response = await together.audio.transcriptions.create(
  model: "Qwen/Qwen3-0.6B",
  language: "en",
  response_format: "json",
  timestamp_granularities: "segment"
});
console.log(response)

How to use Qwen3 0.6B

Model details

Architecture Overview:
• Ultra-compact transformer with 28 layers, 16 query heads, 8 key-value heads
• 32K context window engineered for edge deployment
• Extremely low computational footprint for mobile environments
• Optimized for scenarios where model size and inference speed are critical

Training Methodology:
• Specialized training for edge and mobile deployment scenarios
• Aggressive optimization for minimal resource consumption
• Essential conversational capabilities with maximum efficiency
• Designed for offline and real-time processing requirements

Performance Characteristics:
• Minimal latency with extremely low resource requirements
• Reasonable conversation flow despite size constraints
• Optimized for deployment in severely resource-constrained environments
• Balanced conversation quality against extreme efficiency requirements

Prompting Qwen3 0.6B

Conversation Format:
• Basic system/user/assistant interactions for simple chat scenarios
• Fundamental conversational tasks and information retrieval
• Simple instruction following capabilities
• Designed for scenarios balancing conversation quality against resource efficiency



Optimization Strategies:
• Very simple, direct prompting for optimal results
• Short conversation contexts work best
• Clear, concise task definitions improve performance
• Designed for scenarios prioritizing speed and efficiency over complexity

Applications & Use Cases

Specialized Deployment:
• Ultra-low-resource environments requiring basic conversational functionality
• Scenarios operating within severe computational and memory limitations
• Applications prioritizing deployment flexibility over advanced capabilities
• Cost-sensitive implementations requiring minimal infrastructure investment

Looking for production scale? Deploy on a dedicated endpoint

Deploy Qwen3 0.6B on a dedicated endpoint with custom hardware configuration, as many instances as you need, and auto-scaling.

Get started