NVIDIA Nemotron 3 Nano API

Most efficient agentic AI model with hybrid Mamba-Transformer MoE and 1 million-token context

Deploy
new

This model is not currently supported on Together AI.

Visit our Models page to view all the latest models.

Introducing NVIDIA Nemotron 3 Nano

NVIDIA Nemotron 3 Nano is the most efficient, accuracy-leading open model for building agentic AI applications at production scale. Using a hybrid Mamba-Transformer mixture-of-experts architecture with 1 million-token context length, it enables developers to deploy reliable, high-throughput agents for complex, multi-document, and long-duration operations with 4x higher token generation efficiency compared to Nemotron 2.

1M
Context Length
Million-token context for long-duration agents
4x
Token Generation
Faster than Nemotron 2 with MTP
3B
Active Parameters
From 30B total MoE architecture
Key Capabilities
Leading Agentic Benchmarks: SWE Bench, GPQA Diamond, AIME 2025, HLE, IFBench, RULER
Hybrid Architecture: Mamba-Transformer MoE with multi-token prediction (MTP)
Extreme Context: 1 million tokens for extended agent coherence and cross-document reasoning
Fully Open Source: Model weights, 10T token datasets, recipes, and NeMo Gym tools

NVIDIA Nemotron 3 Nano API Usage

Endpoint

curl -X POST "https://api.together.xyz/v1/chat/completions" \
  -H "Authorization: Bearer $TOGETHER_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "nvidia/Nemotron-3-Nano",
    "messages": [
      {
        "role": "user",
        "content": "What are some fun things to do in New York?"
      }
    ]
}'
curl -X POST "https://api.together.xyz/v1/images/generations" \
  -H "Authorization: Bearer $TOGETHER_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "nvidia/Nemotron-3-Nano",
    "prompt": "Draw an anime style version of this image.",
    "width": 1024,
    "height": 768,
    "steps": 28,
    "n": 1,
    "response_format": "url",
    "image_url": "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png"
  }'
curl -X POST https://api.together.xyz/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $TOGETHER_API_KEY" \
  -d '{
    "model": "nvidia/Nemotron-3-Nano",
    "messages": [{
      "role": "user",
      "content": [
        {"type": "text", "text": "Describe what you see in this image."},
        {"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png"}}
      ]
    }],
    "max_tokens": 512
  }'
curl -X POST https://api.together.xyz/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $TOGETHER_API_KEY" \
  -d '{
    "model": "nvidia/Nemotron-3-Nano",
    "messages": [{
      "role": "user",
      "content": "Given two binary strings `a` and `b`, return their sum as a binary string"
    }]
  }'
curl -X POST https://api.together.xyz/v1/rerank \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $TOGETHER_API_KEY" \
  -d '{
    "model": "nvidia/Nemotron-3-Nano",
    "query": "What animals can I find near Peru?",
    "documents": [
      "The giant panda (Ailuropoda melanoleuca), also known as the panda bear or simply panda, is a bear species endemic to China.",
      "The llama is a domesticated South American camelid, widely used as a meat and pack animal by Andean cultures since the pre-Columbian era.",
      "The wild Bactrian camel (Camelus ferus) is an endangered species of camel endemic to Northwest China and southwestern Mongolia.",
      "The guanaco is a camelid native to South America, closely related to the llama. Guanacos are one of two wild South American camelids; the other species is the vicuña, which lives at higher elevations."
    ],
    "top_n": 2
  }'
curl -X POST https://api.together.xyz/v1/embeddings \
  -H "Authorization: Bearer $TOGETHER_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "input": "Our solar system orbits the Milky Way galaxy at about 515,000 mph.",
    "model": "nvidia/Nemotron-3-Nano"
  }'
curl -X POST https://api.together.xyz/v1/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $TOGETHER_API_KEY" \
  -d '{
    "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
    "prompt": "A horse is a horse",
    "max_tokens": 32,
    "temperature": 0.1,
    "safety_model": "nvidia/Nemotron-3-Nano"
  }'
curl --location 'https://api.together.ai/v1/audio/generations' \
  --header 'Content-Type: application/json' \
  --header 'Authorization: Bearer $TOGETHER_API_KEY' \
  --output speech.mp3 \
  --data '{
    "input": "Today is a wonderful day to build something people love!",
    "voice": "helpful woman",
    "response_format": "mp3",
    "sample_rate": 44100,
    "stream": false,
    "model": "nvidia/Nemotron-3-Nano"
  }'
curl -X POST "https://api.together.xyz/v1/audio/transcriptions" \
  -H "Authorization: Bearer $TOGETHER_API_KEY" \
  -F "model=nvidia/Nemotron-3-Nano" \
  -F "language=en" \
  -F "response_format=json" \
  -F "timestamp_granularities=segment"
curl --request POST \
  --url https://api.together.xyz/v2/videos \
  --header "Authorization: Bearer $TOGETHER_API_KEY" \
  --header "Content-Type: application/json" \
  --data '{
    "model": "nvidia/Nemotron-3-Nano",
    "prompt": "some penguins building a snowman"
  }'
curl --request POST \
  --url https://api.together.xyz/v2/videos \
  --header "Authorization: Bearer $TOGETHER_API_KEY" \
  --header "Content-Type: application/json" \
  --data '{
    "model": "nvidia/Nemotron-3-Nano",
    "frame_images": [{"input_image": "https://cdn.pixabay.com/photo/2020/05/20/08/27/cat-5195431_1280.jpg"}]
  }'

from together import Together

client = Together()

response = client.chat.completions.create(
  model="nvidia/Nemotron-3-Nano",
  messages=[
    {
      "role": "user",
      "content": "What are some fun things to do in New York?"
    }
  ]
)
print(response.choices[0].message.content)
from together import Together

client = Together()

imageCompletion = client.images.generate(
    model="nvidia/Nemotron-3-Nano",
    width=1024,
    height=768,
    steps=28,
    prompt="Draw an anime style version of this image.",
    image_url="https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png",
)

print(imageCompletion.data[0].url)


from together import Together

client = Together()

response = client.chat.completions.create(
    model="nvidia/Nemotron-3-Nano",
    messages=[{
    	"role": "user",
      "content": [
        {"type": "text", "text": "Describe what you see in this image."},
        {"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png"}}
      ]
    }]
)
print(response.choices[0].message.content)

from together import Together

client = Together()
response = client.chat.completions.create(
  model="nvidia/Nemotron-3-Nano",
  messages=[
  	{
	    "role": "user", 
      "content": "Given two binary strings `a` and `b`, return their sum as a binary string"
    }
 ],
)

print(response.choices[0].message.content)

from together import Together

client = Together()

query = "What animals can I find near Peru?"

documents = [
  "The giant panda (Ailuropoda melanoleuca), also known as the panda bear or simply panda, is a bear species endemic to China.",
  "The llama is a domesticated South American camelid, widely used as a meat and pack animal by Andean cultures since the pre-Columbian era.",
  "The wild Bactrian camel (Camelus ferus) is an endangered species of camel endemic to Northwest China and southwestern Mongolia.",
  "The guanaco is a camelid native to South America, closely related to the llama. Guanacos are one of two wild South American camelids; the other species is the vicuña, which lives at higher elevations.",
]

response = client.rerank.create(
  model="nvidia/Nemotron-3-Nano",
  query=query,
  documents=documents,
  top_n=2
)

for result in response.results:
    print(f"Relevance Score: {result.relevance_score}")

from together import Together

client = Together()

response = client.embeddings.create(
  model = "nvidia/Nemotron-3-Nano",
  input = "Our solar system orbits the Milky Way galaxy at about 515,000 mph"
)

from together import Together

client = Together()

response = client.completions.create(
  model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
  prompt="A horse is a horse",
  max_tokens=32,
  temperature=0.1,
  safety_model="nvidia/Nemotron-3-Nano",
)

print(response.choices[0].text)

from together import Together

client = Together()

speech_file_path = "speech.mp3"

response = client.audio.speech.create(
  model="nvidia/Nemotron-3-Nano",
  input="Today is a wonderful day to build something people love!",
  voice="helpful woman",
)
    
response.stream_to_file(speech_file_path)

from together import Together

client = Together()
response = client.audio.transcribe(
    model="nvidia/Nemotron-3-Nano",
    language="en",
    response_format="json",
    timestamp_granularities="segment"
)
print(response.text)
from together import Together

client = Together()

# Create a video generation job
job = client.videos.create(
    prompt="A serene sunset over the ocean with gentle waves",
    model="nvidia/Nemotron-3-Nano"
)
from together import Together

client = Together()

job = client.videos.create(
    model="nvidia/Nemotron-3-Nano",
    frame_images=[
        {
            "input_image": "https://cdn.pixabay.com/photo/2020/05/20/08/27/cat-5195431_1280.jpg",
        }
    ]
)
import Together from 'together-ai';
const together = new Together();

const completion = await together.chat.completions.create({
  model: 'nvidia/Nemotron-3-Nano',
  messages: [
    {
      role: 'user',
      content: 'What are some fun things to do in New York?'
     }
  ],
});

console.log(completion.choices[0].message.content);
import Together from "together-ai";

const together = new Together();

async function main() {
  const response = await together.images.create({
    model: "nvidia/Nemotron-3-Nano",
    width: 1024,
    height: 1024,
    steps: 28,
    prompt: "Draw an anime style version of this image.",
    image_url: "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png",
  });

  console.log(response.data[0].url);
}

main();

import Together from "together-ai";

const together = new Together();
const imageUrl = "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png";

async function main() {
  const response = await together.chat.completions.create({
    model: "nvidia/Nemotron-3-Nano",
    messages: [{
      role: "user",
      content: [
        { type: "text", text: "Describe what you see in this image." },
        { type: "image_url", image_url: { url: imageUrl } }
      ]
    }]
  });
  
  console.log(response.choices[0]?.message?.content);
}

main();

import Together from "together-ai";

const together = new Together();

async function main() {
  const response = await together.chat.completions.create({
    model: "nvidia/Nemotron-3-Nano",
    messages: [{
      role: "user",
      content: "Given two binary strings `a` and `b`, return their sum as a binary string"
    }]
  });
  
  console.log(response.choices[0]?.message?.content);
}

main();

import Together from "together-ai";

const together = new Together();

const query = "What animals can I find near Peru?";
const documents = [
  "The giant panda (Ailuropoda melanoleuca), also known as the panda bear or simply panda, is a bear species endemic to China.",
  "The llama is a domesticated South American camelid, widely used as a meat and pack animal by Andean cultures since the pre-Columbian era.",
  "The wild Bactrian camel (Camelus ferus) is an endangered species of camel endemic to Northwest China and southwestern Mongolia.",
  "The guanaco is a camelid native to South America, closely related to the llama. Guanacos are one of two wild South American camelids; the other species is the vicuña, which lives at higher elevations."
];

async function main() {
  const response = await together.rerank.create({
    model: "nvidia/Nemotron-3-Nano",
    query: query,
    documents: documents,
    top_n: 2
  });
  
  for (const result of response.results) {
    console.log(`Relevance Score: ${result.relevance_score}`);
  }
}

main();


import Together from "together-ai";

const together = new Together();

const response = await client.embeddings.create({
  model: 'nvidia/Nemotron-3-Nano',
  input: 'Our solar system orbits the Milky Way galaxy at about 515,000 mph',
});

import Together from "together-ai";

const together = new Together();

async function main() {
  const response = await together.completions.create({
    model: "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
    prompt: "A horse is a horse",
    max_tokens: 32,
    temperature: 0.1,
    safety_model: "nvidia/Nemotron-3-Nano"
  });
  
  console.log(response.choices[0]?.text);
}

main();

import Together from 'together-ai';

const together = new Together();

async function generateAudio() {
   const res = await together.audio.create({
    input: 'Today is a wonderful day to build something people love!',
    voice: 'helpful woman',
    response_format: 'mp3',
    sample_rate: 44100,
    stream: false,
    model: 'nvidia/Nemotron-3-Nano',
  });

  if (res.body) {
    console.log(res.body);
    const nodeStream = Readable.from(res.body as ReadableStream);
    const fileStream = createWriteStream('./speech.mp3');

    nodeStream.pipe(fileStream);
  }
}

generateAudio();

import Together from "together-ai";

const together = new Together();

const response = await together.audio.transcriptions.create(
  model: "nvidia/Nemotron-3-Nano",
  language: "en",
  response_format: "json",
  timestamp_granularities: "segment"
});
console.log(response)
import Together from "together-ai";

const together = new Together();

async function main() {
  // Create a video generation job
  const job = await together.videos.create({
    prompt: "A serene sunset over the ocean with gentle waves",
    model: "nvidia/Nemotron-3-Nano"
  });
import Together from "together-ai";

const together = new Together();

const job = await together.videos.create({
  model: "nvidia/Nemotron-3-Nano",
  frame_images: [
    {
      input_image: "https://cdn.pixabay.com/photo/2020/05/20/08/27/cat-5195431_1280.jpg",
    }
  ]
});

How to use NVIDIA Nemotron 3 Nano

Model details

Architecture Overview:
• Hybrid Mamba-Transformer mixture-of-experts (MoE) architecture with 30B total parameters and 3B active per token.
• 1 million-token context window enabling extended agent coherence and multi-document reasoning for complex operations.
• Multi-token prediction (MTP) generates multiple future tokens simultaneously in one forward pass for faster sequence generation.
• Latent MoE captures more nuanced patterns and handles diverse inputs better than traditional architectures.
• Thinking budget feature avoids overthinking and optimizes for lower, predictable inference cost.

Training Methodology:
• Multi-environment reinforcement learning (RL) training across 10 environments using open-sourced NVIDIA NeMo Gym.
• Trained on 10 trillion tokens of curated datasets covering code, scientific reasoning, math, function calling, and instruction following.
• Post-training RL achieves leading accuracy by training across diverse environments for robust agentic behavior.
• NVFP4 quantization applied to deliver high throughput and compute efficiency while maintaining accuracy.

Performance Characteristics:
• 4x higher token generation efficiency compared to Nemotron 2 via hybrid Mamba-Transformer MoE architecture.
• Leading accuracy on agentic benchmarks: SWE Bench coding, GPQA Diamond scientific reasoning, AIME 2025 math.
• Strong function calling and instruction following: IFBench, Arena Hard performance.
• Extreme long-context capabilities: RULER benchmark with 1M token context for RAG pipelines.
• Best-in-class among open models with 30B or fewer MoE parameters across targeted agentic tasks.

Prompting NVIDIA Nemotron 3 Nano

Applications & Use Cases

Agentic AI Applications:
• Building reliable, high-throughput AI agents for complex, multi-step operations and long-duration tasks.
• Multi-agent collaboration systems requiring extended conversation history and plan state retention.
• Autonomous agents for customer service, IT ticket automation, and business process orchestration.

Code & Development:
• SWE Bench workflows: code review, summarization, debugging, and generation with long context.
• Long-form code understanding and generation across multiple files and repositories.
• Software engineering agents for automated code maintenance and refactoring.

Enterprise & Compliance:
• Financial transaction compliance monitoring and cybersecurity fraud detection with IFBench.
• Automated generation of long-form business reports from many inputs (dashboards, logs, memos, meeting notes).
• Compliance report generation maintaining consistency across sections with 1M token context.

RAG & Document Processing:
• Retrieval-augmented generation pipelines processing extensive multi-document contexts.
• Cross-document reasoning and synthesis across hundreds of documents simultaneously.
• Long-form content generation with RULER benchmark performance for information coherence.

Function Calling & Integration:
• Complex function calling and API orchestration for enterprise system integration.
• Tool use and multi-step reasoning for autonomous workflow execution.
• High-accuracy instruction following for mission-critical business applications.

Looking for production scale? Deploy on a dedicated endpoint

Deploy NVIDIA Nemotron 3 Nano on a dedicated endpoint with custom hardware configuration, as many instances as you need, and auto-scaling.

Get started